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Background

Anti-CCR8 Therapy has Robust Anti-Tumor Activity Anti-CCR8 and anti-PD1 Combination Therapy Enhances Overall Survival Treatment with SRF114, a Fully Human Afucosylated I1gG1 Antibody,

In a Checkpoint-Resistant Melanoma Tumor Model and Promotes Expansion of Effector T cells in B16F10 Melanoma Results in Robust Anti-Tumor Activity in Human CCR8 Knock-In Mice

* Foxp3* regulatory T (Treg) cells play a crucial role in orchestrating immune
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