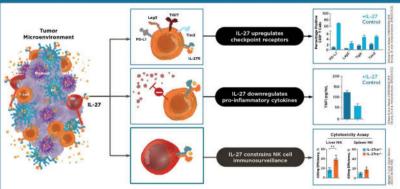
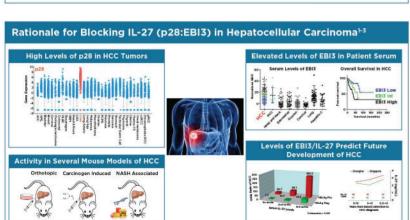
Results from a phase 2 study of triplet blockade of the IL-27, PD-(L)1, and VEGF pathways with casdozokitug (casdozo, CHS-388) in combination with atezolizumab (atezo) and bevacizumab (bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (uHCC)

Abstract #470

Daneng Li,¹ Kun-Ming Rau,² Ming-Lung Yu,³ Hong Jae Chon,⁴ Hsueh-Chou Lai,⁵ Meredith Pelster,⁶ Stuart K. Roberts,² Oxana Crysler,⁶ Gina Vaccaro,९ Mark Womack,¹º Ju Won Kim,¹¹ Jin-mo Yang,¹² Hyung-don Kim,¹³ Daniel Chin,¹⁴ Varun N. Kapoor,¹⁴ Jonathan Hill,¹⁴.¹⁵ Vienna Reichert,¹⁴.¹⁵ Ricard Masia,¹⁴.¹⁵ Lauren C. Harshman,¹⁵ Chih-Hung Hsu,¹⁶ Yoon-Koo Kang¹³

'City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ²E-Da Cancer Hospital Kaohsiung City, Taiwan; 'Kaohsiung Medical University Hospital (Kaohsiung Medical University - Chung-Ho Memorial Hospital (Kaohsiung Medical University - CHA Un


BACKGROUND


Regulatory Cytokine

- IL-27 is a heterodimeric cytokine expressed by myeloid cells, including macrophages and dendritic cells, which plays a role in modulating immune responses during infection and tumor immune surveillance
- IL-27 regulates the activity of several immune cell types through upregulation of immune suppressive receptors (PD-L1, TIGIT, LAG3) and inhibition of inflammatory cytokines
- Casdozokitug (or casdozo; CHS-388; formerly SRF388) (or its mouse surrogate) has shown antitumor activity in several preclinical models of HCC
- IHC evaluation of HCC commercial tissue microarrays revealed that most HCC samples express the target: IL-27+ tumor-associated macrophages (TAMs, internal data)
 Casdozo is the first in class and only clinical-stage IL-27
- targeting antibody, which neutralizes IL-27, promotes immune activation and stimulates antitumor response

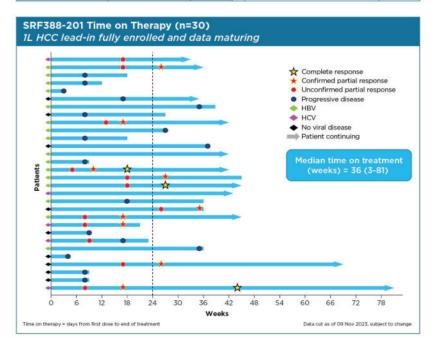
 A phase 1 study demonstrated a favorable safety profile and
- antitumor activity alone and in combination with PD-1 blockade in indications known to have high levels of IL-27 pathway activation (NCTO4374877)
- Casdozo induces increases in serum IFN-y and NK cell gene activation in cancer patients, indicating an immune response and reversal of IL-27-mediated immune suppression
- The lead-in phase of the SRF388-201 study evaluated the safety and antitumor activity of this immunoregulatory cytokine antagonist given in combination with atezo and bev in patients with unresectable, locally advanced or metastatic HCC

IL-27 Dampens Antitumor Immunity in the Tumor Microenvironment

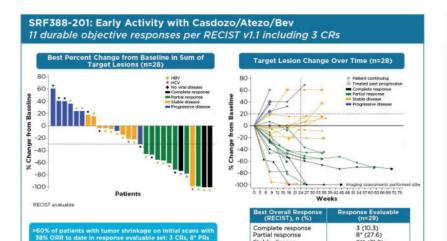
METHODS

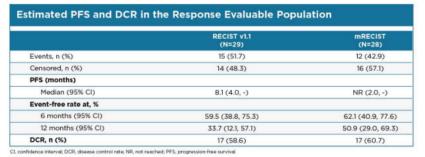
Phase 2 Study Schema of Casdozo/Atezolizumab/Bevacizumab in IO Naïve 1L HCC Patients: SRF388-201 Open-label Lead-In (N=30)

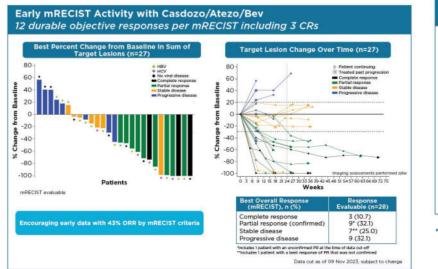
Controlled HBV or Cured HCV (secondary)

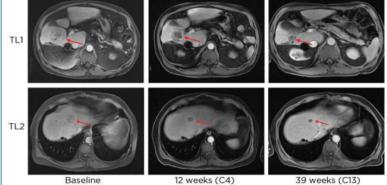

II., first line: aPD-(L>1, anti programmed death-ligand I; BCLC, Barcelona Clinic Liver Cancer; DCR, disease control rate; ECOS PS, Eastern Cooperative Oncology Group

Primary endpoint: Safety


RESULTS


SRF388-201 Baseline Characteristics 1L HCC lead-in


Demographics, n (%)			Lead-In (n=30)	Baseline Characteristics, n (%)			Lead-In (n=30)
Age	Median years	(range)	66 (19, 82)	2800000	Locally advanced, unresectable		10 (33.3)
Gender	Female		7 (23.3)	Stage	Metastatic		20 (66.7)
	Male		23 (76.7)			A5	27 (90.0)
Race	Asian		20 (66.7)	Child-Pugh score		A6	3 (10.0)
	Native Hawaiian or Other Pacific Islander		1 (3.3)	BCLC stage		В	6 (20.0)
	Native Hawalian or Other Pacific Islander		1(3.3)			C	24 (80.0)
	White		7 (23.3)	Viral status		HBV	16 (53.3)
	Not reported		2 (6.7)			HCV	5 (16.7)
(/			0.05			Uninfected	9 (30.0)
Region		Asia excluding Japan	18 (60.0)	Baseline AFP	< 400 ng/mL	16 (53.3)	
		ROW	12 (40.0)	baseline AFP		≥ 400 ng/mL	14 (46.7)
ECOG		0	7 (23.3)	Macrovascular involvement		ement	7 (23.3)
		1	23 (76.7)	Varices at study entry			3 (10.0)


RESULTS

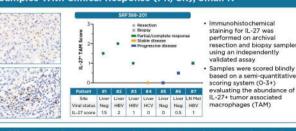
Encouraging Evidence of Tumor Response with Casdozo Added to SOC in IL HCC

- 59 yo Hispanic man with cirrhosis, Child-Pugh A, BCLC C, no history of HBV/HCV, stage III unresectable HCC
- Durable PR which occurred at 21 weeks (C7) (-48%)
- Continued shrinkage at 39 weeks (C13) (-56%)
- · Patient ongoing at 72 weeks (C24) with continued tumor shrinkage

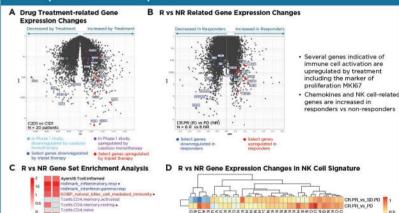
SRF388-201 HCC Lead-in Phase Safety Summary Treatment emergent adverse event (TEAE), n (%) Treatment-related AE®, n (%) 27 (90.0) Grade ≥3 TEAE, n (%) Grade >3 treatment-related* AF, n (%) 11 (36.7) Serious TEAE, n (%) Treatment-related^a SAE, n (%) 13 (43.3) 7 (23.3) TEAE leading to any study drug discontinuation, n (%) Treatment-related AE leading to any study drug discontinuation, n (%) 6 (20.0) 4 (13.3 TEAE leading to CHS-388 discontinuation, n (%) ment-related AE leading to CHS-388 discontinuation, n (%) 2 (6 7) TEAE leading to death, n (%) Treatment-related AE leading to death, n (%) 3 (10.0)

natment in the combination therapy Data cut as of 09 Nov 2023, subject

SRF388-201: Triplet is Well Tolerated



Immune-related AEs (irAEs) and bleeding events were infrequent and generally low grade


- Grade ≥3 treatment-related irAEs included stomatitis, myasthenia gravis and rash,
each in 1 patient

- A treatment-related bleeding event of grade 3 epistaxis occurred in 1 patient

Preliminary Association of Higher Levels of IL-27+ Tumor Associated Macrophages in Archival Tissue Samples With Clinical Response (PR/CR), Small N

Gene Expression Differences in Treated Patient PBMCs: Pharmacodynamic and Responders vs Non-responders

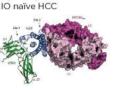
Toolscope Base Space Spa

Gene expression analysis of patient PBMCs by bulk RNA-seq comparing C2D1 to C1D1 (pre-treatment).

A) Volcano plot highlighting select genes in response to casdozo/atezo/bev treatment; upregulated (red) or downregulated (blue). A select number of genes that were upregulated (purple) or downregulated (light blue) by casdozo alone from the phase I study (NCT0535986) are also highlighted. Paired RNA-Seq sample (on-treatment vs pre-treatment) analysis was used to calculate fold-change (FC, x-axis) and p-value (pval, y-axis). B) Volcano plot highlighting select genes that were increased (red) or decreased (blue) by the treatment in F (CR and PR) compared to NR (PD) patients. C) Gene set enrichment analysis (GSEA) highlighting signatures that are enriched in R vs NR. Asterix indicates signatures enriched in response to casdozo alone treatment in the phase I study.

D) Heatmap of a subset of individual genes within the NK signature highlighting gene expression changes in R vs NR.

CONCLUSIONS


Casdozo is a promising novel IO agent with clinical activity in liver cancer that may be associated with IL-27 pathway biomarkers

• IL-27 is an immunoregulatory cytokine that can suppress the antitumor response

R, complete response; NR, non-responder (PD); PD, progressive disease; PR, partial response; R, responder (PR/CR); SD, stable disease

- Casdozo is a first-in-class immunomodulatory antibody targeting IL-27
- Casdozo has demonstrated monotherapy and combination antitumor activity across
 multiple solid tumor types with a favorable safety profile, and evidence of immune activation
- Triplet blockade of the IL-27, PD-(L)1 and VEGF pathways with casdozo/atezo/bev has an
 acceptable safety profile to date with promising antitumor activity in IO naïve HCC
- Encouraging early activity with casdozo/atezo/bev triplet:
 ORR: 38% per RECIST v1.1 and 43% per mRECIST
- Response associated with biomarkers of IL-27
- Results support continued evaluation of casdozo with VEGF and PD-(L)1 blockade in HCC
- Study plans in place to evaluate casdozo/toripalimab (anti-PD-1 antibody)/bev for future development

REFERENCES: 1. Aghayev T, et al. Cancer Discov. 2022;12(8):1960-1983. 2. Rausch M, et al. J Immunother Cancer. 2020;8:doi: 10.1136/jitc-2020-SITC2020.0727. 3. Yuan JM, et al. Cancer Epidemiol Biomarkers Prev. 2021;30(2):388-395.

